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Schemes recently introduced by Strang 1131, [14] are investigated with regard to the 
introduction of boundary conditions. Several numerical experiments are conducted, 
and a comparison of Wang’s schemes with the Richtmyer scheme [12] and a generalii- 
tion proposed by Gourlay and Morris [2] is reported. 

I. OPTIMAL DIFFERENCE SCHEMES 

The Lax-Wendroff method [IO] for the one space dimensional system of con- 
servation laws 

al/at + afpx = 0, (l.0 

where n is a vector and f is a vector function of the components of the unknown rr, 
has received considerable attention in recent years. In [ 121, Richtmyer showed how 
the Lax-Wendroff scheme could be written as a two step procedure in such a way 
that the scheme was computationally efficient and its high accuracy was maintained. 
The stability condition for these one dimensional schemes coincided with the 
well-known Courant-Friedrichs-Lewy condition, namely p \ X ) < 1 for stability, 
where p is the mesh ratio and 1 X 1 is the maximum modulus eigenvalue of the 
Jacobian matrix off. In such a situation, the difference scheme is said to be opti- 
mally stable. 

The natural extension of the Lax-Wendroff scheme in one space dimension to 
the system in two space dimensions, 

au/at + afpx + aplay = 0 W) 

[g = g(u)], was considered in [ 1 l] by Lax and Wendroff and in [12] by Richtmyer. 
It was found, in this case, that the stability condition was more severe, namely 

* From April 1, 1970, at Scientific Centre, IBM (United Kingdom) Ltd., Peterlee, Co. Darham. 
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where AA and A, are the maximum eigenvalues of the Jacobians off and g with 
respect to II, respectively. Efforts to alleviate the stability condition have been 
proposed by Burstein [I] but, in so doing, the resulting scheme is so complex as to 
completely invalidate any hoped-for improvement. 

A more promising scheme for solving (1.2) has been proposed by Strang [13]. 
There the author proposes a scheme which alternates a one-dimensional Lax- 
Wendroff operator in the x direction with one in the y direction so that if L, 
represents a one dimensional x-direction Lax-Wendroff operator and L, the 
y direction operator, Strang’s scheme is 

U m+1 = W,L, + JLU urn, (I.31 

where u,+r = u[x, y, (m + l)k], k being the mesh spacing in time, and where 
x = ih, y = jh is a grid point in the (x, v) space, h being the mesh spacing in the 
x and y directions. The scheme is O(k2) accurate and has the stability condition. 

and is, hence, optimal. 
The computational procedure of (1.3) has been given by Gourlay and Morris [6]. 

A further improvement of (1.3) has recently been given by Strang [14]. The impro- 
vement comes from the computational aspect of the method. Strang notices that 
while (1.3) is optimal, it takes approximately twice as long to implement as the 
standard Lax-Wendroff scheme and the improvement of the scheme, computa- 
tionally, is thus marginal. However, by introducing 

U m+1 = JkPLLz12 u, 9 (1.4) 

where Lzj2 is the Lax-Wendroff operator in the x direction with a $k span in time 
rather than the usual k, the O(ka) accuracy is maintained and the scheme is still 
optimal. By applying the operator twice and using the fact that 

we obtain 
L x12 . L/2 --t L, + W3), 

U m+2 = L,2LLLLI2 u, (1.5) 

so that six operators have been compounded into five. Thus, one can compound 
the operators at will, the L,,, operators being required only at print-out. As 
Strang points out, this makes the scheme (1.5) comparable in efficiency with the 
Lax-We&off method in two dimensions and has the factor fi in its favor from 
the stability condition. The scheme (1.4) would, therefore, seem to be the more 
attractive to use in practice. 

Ihe purpose of this section is to consider the effect of boundary conditions 
upon Strang’s schemes (1.3) and (1.4) in an effort to ascertain their merits in prac- 
tical use. 
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Let us consider the solutions of the two-dimensional system of conservation 
laws 

h/at + aflax + agpy = 0 (I-6) 
subject to 

45 Y, 0) = ul(x, Y> 0 d X,Y d 1, 
w, Y, 0 = WY, 0 Ody<l,t>O, 

070, t) = wx, t) O<x<l,r>O, 

where a is an unknown vector of x, y, and t; f and g are known vector functions of 
the components of II. U, , U1 , and US are known functions. We assume, for con- 
venience, that all the eigenvalues of the Jacobians off and g with respect to u are 
positive so that (1.6) together with the initial and boundary conditions constitutes 
a well-posed problem. 

The method (1.3), written using the format suggested by Gourlay and Morris [6], 
is 

(I-8) 

u”“+l = W;“l:’ + w;y>, (I-9) 

where the notation em = I$? = o(ih,jh, mk), g’” = gz = g(o,“;), f$:’ = f(W$‘) 
has been used and the difference operators 6x, Sy are the usual difference operators 
defined by 

“2G = uElp?i - ‘Elpj 9 “p; = ~~+1,2 - QL,2 ’ 

and pz , pV are the usual averaging operators de6ned by 
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The scheme (1.4) may be written in a similar format to ((I.7), (I.8), (1.9)), namely, 

Vgi’ = pall” - p/4 S,f” 
m+1 

V(2) m+1 = Urn& - P/2 u,,, 

w1 = PYvr - Pi2 h@ 

VG;-l = vg - p s,gg;l 
vm+1 

(5) = kV2 -PI4 Wi' 

V;l,;l = VE;l - p/2 S,f$l , 

(1.10) 

U 
m+1 = Vgl. (1.11) 

The compounding of (1.10) is obvious and is omitted. It is immediately obvious 
that schemes ((1.7), (1.8), (1.9)) and {(I.lO), (1.1 I)} require boundary conditions 
on x = 1, 0 < y < I, and y = 1, 0 < x < I, in order that the schemes are 
feasible. It is also obvious that such boundary conditions are not forthcoming 
from the dikential equation and, furthermore, that the boundary conditions 
given on x = 0,O < y < 1, y = 0,O < x < 1 cannot be used in the intermediate 
levels as boundary conditions since the intermediate levels bear no relation to the 
differential Eq. (IA). This means, therefore, that we must implement some technique 
for introducing the extra data required at all the intermediate boundaries and at 
the fmal time level at the upper boundaries. This procedure will also apply to the 
operators that are compounded, that is to the Lz,4Lz,2 + L, + O(P) operators, 
for the g&en boundary conditions again bear no relation to the difference scheme 
in this case. The techniques for introducing the extra boundary conditions can be 
derived following the procedure outlined by Gourlay and Morris [4]. For (1.7) and 
(1.8) the boundary techniques become 

v;i” = &Iv2 + 2) Ugm - p/2(2A, - A,3 gorn 
0 

V;T’ = WV” + 2) UN” - P/WV, + VW’> fzN” 

vii’ = uom - PW, - A3 $” 
0 

viji’ = Unr’R -pm?/ + v,2My 

m+1 vii” = HA2 + 2) v2i1 - P/w z - 42) f(2) 
0 

V;“i’ = *(V,” + 2) V&l - p/2(2V, + V, ) ;&+l 
N 2 N 

v;l,;’ = vyg’ - p(2d, - Az2) f$’ 
0 0 0 

y1 = VT’ - PW, + vza)fg, 
N 

(LI2) 
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and 
yl’ w+l = #(AZ” + 2) Ibm -p/2(2& - Ll,a) fern 

wgl = w,” + 2) UN” - p/w7, + v,4 f,” 
w;p = 00” - P(2& - A3 w 

0 0 
m-t1 _ 

w$l - uNm - P(2Vz + h2)fg+l 

wy;;l = @L2 + 2) w;;' - p/2(24 - 43 gF1 

(1.13) 

0 

w$T1 = WV” + 2) + - P/2(2V, + YY”) giy’ 

wm+1 
(4) = wii” - PW Y - cl &Y 
0 0 0 
m+1 _ wrn+l 

y4' - 2' - P(2Vv + v*3 q1 

so that the complete algorithm comprises (1.7), (1.8), (1.9), (1.12), and (1.13) where 
the constituent equations of (1.12) and (1.13) are used in the correct order with 
those of 0.7) and (1.8). That is, the first equation from (1.7) and the tirst two 
equations from (1.12) are used before going on to the next step, etc. 

The corresponding boundary formulae for (1.10) are 

v;;l = &lz2 + 2) uom - p/4(2& - A$) fern 
0 

vrn+l 
(1) = $(v,’ + 2) UN” - ~/4(2v~ + hz> fNm 

G2,1 = u()” - p/2(2Alc - Ly)f;;l 
0 0 

vyl = UN” - P/2(2Va! + Vz”) fF+’ 

VET1 = &I,” + 2) V?azt+l - P/2(2d, - 42) &’ 
0 

v?y = p,2 + 2) V&l - P/2(2V, + v,q gk 
N 

vy$l = Gi” - Pm z - d .3 ii!3 v 
0 0 0 

m+1 _ 
V$4) - VtjF - P(2Vv + vu2> $T’ 

vygl = *(AZ2 + 2) VGi’l - P/4ca - 43 ftr 
0 

vr = HV,” + 2) v$’ - P/4(2& + v,2) f+ 
N 

m+1 
V!O) = vy,p - p/2(2Az - A,3 f$)+’ 

0 

vp = v& p/2(2V, + v,z) f;+l. 
N N 

(I. 14) 
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The difference operators d, and V, are defined by the relations 

and similar definitions for A, and V, . 
The merits of including such modifications are discussed in [4], together with 

certain generalizations. It should be noted that this procedure is slightly diGrent 
from that suggested in several papers by Kreiss [7], [8], [9]. An alternative boundary 
procedure is given in [5], which maintains the uncoupled property of the Lax- 
We&off operator. 

11. NUMERICAL &WLTS 

A number of numerical experiments were carried out to compare the schemes 
(I.3) and (I.4) using the formulation given in equations {(1.7), (I.8), (I.9)) and 
((I. lo), (I. 11)). We investigated the average saving in time using techniques (r.4) 
and (I.3) and, also, the effect of the method of incorporating the boundary con- 
ditions upon the accuracy of the methods. To these ends, we studied the numerical 
solution of the two space dimensional equation 

(II. 1) 

subject to the initial condition 

a, Y, 0) = t(x + YY W-2) 

and the boundary conditions 

l-1/1 fyt z 
t 1 Obv<l, 

(11.3) 

O<x<l. 

Equation (II.l), together with Eq. (II.2) and (II.3), has the theoretical solution 

4x9 Y, 0 = 1 
1 - d/1 + (x + y)t B 

t I* 
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As a comparison with the novel schemes described in Section I, we also ran the 
problem (11.1,11.2,11.3) for the two step Lax-Wendroff method and the generaliza- 
tions described in [2]: namely, 

u :+I = tiz +P,) urn - vW,fm + Hyg,), 
U m-k1 = %n -p/21(1 - MWW,f, + Han) + MWW&+~ + Hd+Jl, 

TABLE I 

Scheme (1.3): Errors at 100 Time Steps 

P 
\ 

Average 
Expt. h 0.3 0.6 1.0 1.5 1.75 2.0 Time 

0.1 

1 
0.2 

0.1 

2 
0.2 

0.1 

3 
0.2 

0.1 

4 
0.2 

10-r 
uneven 

loo 
very 

10-l 
uneven 

100 
very 

lo-’ 
even 
10-S 
even 

lo-’ 
even 
10-s 
even 

10-d 
even 
10-S 
even 

10-a 
even 
10-S 
even 

lo-’ 
even 
10-S 
even 

10-4 
even 
10-s 
even 

100 

100 
very 

lo-’ 
even 
10-S 
even 

lo-’ 
even 
lo-’ 
even 

10-d 
even 
10-S 
even 

loo 
very 

uneven 
100 

very 
uneven 

10-a 
even 
10-s 
even 

10-a 
even 
lo-’ 
even 

lo-’ 
even 
10-s 

100 
VW 

uneven 
100 

very 
uneven 

10-4 
even 
10-S 
even 

10-h 
even 
lo-’ 
even 

10-4 
even 
10-S 
even 

100 
very 

uneven 
loo 

very 
uneven 

104 
even 
10-3 
even 

lo-’ 
even 
10-4 
even 

10-h 
even 
IO-3 
even 

1 min 

52 set 

1 min 

56 set 

2 min 

3sec 

2 min 

6sec 

Experiment No. 1. All boundary conditions inserted as appropriate theoretical solution. 
Experiment No. 2. All upper boundaries obtained using the appropriate formula from (I.12) 

and (I.13) and all lower boundaries given by appropriate theoretical solution. 
Experiment No. 3. All upper boundaries given as in No. 2. All intermediate lower boundaries 

given by appropriate formula from (1.12) and (I.13). The lower (m + 1) boundary given by 
appropriate theoretical solution. 

Experiment No. 4. All boundaries given by appropriate equation in formulae from (1.12) and 
(1.13). 
Note. The p quoted in these results = 2 x p quoted in text in Section 1. (For convenience we 
programmed the schemes on a double size grid.) 
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where 

p&n = Glj + UL - 
2 ’ Hzfm =f?+~ -.fLi 9 

etc., and a is a parameter. 
The result of the runs on a computer are given in Tables I-IV. The entries 

indicate the largest error that occurred over the region at one hundred time steps, 
and the comment with each entry in the table indicates the distribution of the 
errors. 

TABLE II 

Scheme 1.4: Errors at 100 Time Steps 

P 
\ Expt. h 0.3 0.6 1.0 1.5 1.75 2.0 Average Time 

0.1 

1 
0.2 

0.1 

2 
0.2 

0.1 

3 
0.2 

0.1 

4 
0.2 

10” 

10-l 
uneven 

lo-’ 
even 
10-J 
even 

lo-’ 
even 
10-J 
even 

10-4 
even 
10-a 

10-Z 
uneven 

10-l 
uneven 

104 
even 
10-z 

even 

10-a 
even 
10-s 
even 

10-e 
even 
10-s 
even 

10-e 
uneven 

10-l 
uneven 

lo-’ 
even 
10-a 

even 

10-t 
even 
10-s 
even 

10-t 
even 
10-4 

lo-= 
uneven 

10-O 
uneven 

lo-” 
even 
10-a 

even 

10-a 
even 
10” 
even 

lo-’ 
even 
lo-’ 

10-z 
uneven 

10-O 
very 

uneven 

104 
even 
lo-3 

even 

10-4 
even 
10-4 
even 

lo-” 
even 
lo-” 

even 

10-p 
uneven 1 min30sec 

10-O 
very 

uneven 

lo-’ 
even lmin25sec 
10-s 

even 

lo-’ 
even lmin21sec 
104 
even 

104 
even lmitl2OseC. 
lo-’ 
even 

Experiment No. 1. Theoretical boundarks at all boundaries. 
Experiment No. 2. All upper boundaries obtained using appropriate formula from (I.14) and 

all lower boundaries given by appropriate theoretical solution. 
Experiment No. 3. All boundaries except (m + 1) lower boundary given by appropriate 

formula from IQ. 0.14). The (m + 1) lower boundary given by appropriate theoretica solution. 
Experiment No. 4. All boundaries given by (I.14) except at print-out, when the theoretical 

solution at lower boundaries at the final level was sulwtituted. 
Note. Thep quoted in the table = 2 x p quoted in Section I. 



COMPARISON OF MULTISTEP FORMULATIONS 237 

TABLE III 
Theoreticd Boundary Data: Errors at 100 Time Steps 

a 0.3 0.6 1.0 1.5 1.75 2.0 Average Time 

0.25 
0.1 10-a 

even 

0.2 10-l 
uneven 

0.5 
0.1 

0.2 

10-S 
even 
10-a 
even 

10-S 
even 

10-l 
uneven 

10-s 
even 
10-a 
even 

10-8 
uneven 

100 
very 

uneven 
10-s 
even 
10-a 
even 

10-l 
uneven 

100 
very 

uneven 
10-s 
even 
IO-’ 

uneven 

10-l 10-l 
very very 

uneven uneven 
100 100 
very poor 

Uneven results 
10-J 10-J 
even even 
10-l IO-’ 2min 

uneven uneven 2osee 

TABLE IV 
Boundary Technique Applied: Errors at 100 Time Steps 

a 0.3 0.6 1.0 1.5 1.75 2.0 Average Time 

0.1 10-l 10-l 
0.25 uneven uneven 

0.2 * * 
0.1 10-s 10-s 

0.5 even even 
0.2 10-= 10-a 

even even 

* * * * 

* * * * 
10-s 10-a 10-s 10-s 
even even even even 
10-s * * * 2min 
even 37s 

* Indicates nonlinear @stability had developed. 

From the computed results quoted in Tables I-IV, it was concluded that the 
most satisfactory procedures were those described in Experiments 3 and 4 in 
Table II and Experiment 3 in Table I. These schemes have a higher accuracy than 
the best schemes in Tables III and IV and, furthermore, the accuracy is greater 
when using a = 4 than when a = ) in Tables III and IV. However, even the scheme 
with a = 4 in table IV suffers from nonlinear instability for h = 0.2 and, thus, 
makes the scheme suspect. It is marked how even the errors are for Experiments 2, 
3, and 4 in both Tables I and II. 

A point that naturally arises in connection with the schemes (I. 10) is its associated 
boundary technique when compounding of the operator takes place. In this case, 
boundary conditions on x = 0 which would be applied to the two operators 
L z12, L,,, separately cannot be applied to the operator L, which results from the 
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compounding of LzlB - LolB . This means that a boundary technique similar to 
those quoted in Eqs. (1.14) should be used and Eq. (I.ll), which introduces the 
physical boundary conditions, does not appear again until print-out. In these 
circumstances, it is obvious that there are grave dangers of the difference equations 
becoming unstable since, in effect, continued introduction of boundary data, using 
the boundary techniques on x = 0 and y = 0, means that the data are being 
introduced in a direction directly opposite to the direction of the characteristic 
curves on the lines x = 0 and y = 0. This problem arises only when the compound- 
ing of operators occurs. Since no such operation takes place in (1.7), (1.8), and 
(1.9), no problem of introducing ‘wrong’ boundary conditions takes place. To 
investigate the effect of the continual introduction of ‘wrong’ data when compound- 
ing the operators in (I. lo), we considered the problem 

g + g (&d2) + g W) = 0 

with the initial condition 

4-GY, 0) = I;, 
0 <x GO.1 
0.1 < x < 0.5, 

(11.4) 

which is independent of y. This initial condition has a discontinuity which propa- 
gates into the field so that the shock front is parallel to they axis and moves along 
the line 

x = 0.1 + 0.5t. 

Thus, we substituted the boundary conditions 

u(O,y,t)= 1, t>o; 
x < 0.1 + 0.52 
x > 0.1 + 0.5t. (11.6) 

The results of computing the solution of (11.4), (11.5), (II.6) using the algorithms 
defined by (1.7), (I.8), (1.9), and (1.10) are given in Table V, where the mesh ratio p 
was 1.0 and h = 0.01 for all the experiments. 

The effect that incorrect data can have upon schemes (I. lo), (I. 11) (if compound- 
ing of the operators takes place with the associated boundary technique is clear 
from Table V); nonlinear instability can take place when print-out is suspended 
for more than two time steps. Thus, we must compound the operators 

L z/2 * L,2 - L 

with caution and, hence, the hoped-for increase in efficiency is only marginal. 
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TABLE V 

Solution at 20 Time Steps for y = 0.25 

Grid 
\ 

Expt 
Point No. 1 2 3 4 5 6 I 8 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 

I.cKKl lmo 1.000 l l l 2 *3 .4 
0.993 1.016 1.007 
0.929 0.812 0.882 
0.925 0.821 0.885 
1.078 1.153 1.108 
1.077 1.158 1.109 
1.003 0.989 1.009 
1.002 0.992 1.902 
0.751 0.629 0.695 
0.751 0.629 0.695 
1.287 1.380 1.326 
1.287 1.380 1.326 
1.259 1.264 1.264 
1.259 1.264 1.264 
0.154 0.149 0.152 
0.154 0.149 0.152 
o.ooo o.ooo o.ooo 
OS@0 O.ooO 0.000 
0.000 O.ooO 0.000 

+ 

Solution = 0.000 to grid point 50 

l.ooO 
1.003 
0.9221 
0.9233 
1.084 
1.085 
1.000 
l.OCMl 
0.744 
0.744 
1.294 
1.260 
1.260 
0.153 
0.153 
0.153 
0.000 
0.000 
0.000 

Experiment No. 1. Equations 1.7, 1.8, 1.9. 
Experiment No. 2. Equations (1.10) (1.11) using theoretical data on x = 0 at print-out; 

print-out every time step. 
@eriment No. 3. As in No. 2 except print-out every 2 time steps. 
I%periment No. 4. As in No. 2 exapt print-out every 3 time steps. 
Expaiment No. 5. As in No. 2 exce.pt printout every 4 time steps. 
mt No. 6. As in No. 2 except print-out every 5 time steps. 
Experiment No. 7. As in No. 2 except print-out every 10 time steps. 
.l indicates numbers order 1O’O after 3 time steps. 
.2 indicates numbers order 1O78 after 8 time steps. 
*3 indicate3 numbers order lOTa after 9 time steps. 
,4 indicates numbers order lOTa between 10 and 20 time steps. 
Experiment No. 8. Equations &lo), (1.11) using “theoretical” data for all x = 0. This was 

possible in this example since the boundary data were time independent (u = 1 for all t at x = 0). 

III. GENEW;IZATIONS 

In Section II we assumed the Jacobian matrices off and g had only positive 
eigenvalues. If this were not so and, corresponding to (q u2 ,..., u,), the 
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eigenvalues A,, A, ,..., A, of A and p 1 , p 2 ,..., pp of B are positive, and the 
eigenvalues 

hl+, , A,+, ,---, k, of A and P~+~ , CL~+~ ,..., CL,, of B, 

corresponding to the elements (u,+~ , up+2 ,..., u,), are negative, then boundary 
conditions would be given for the fbst p components of u on x = 0,O < y < 1 
and y = 0,O < x < 1 and for the next (n - p) components of II on 

x=l,O<y<l and y=l,O<x<l. 

(Other combinations are obviously possible.) In the cases where the eigenvalues 
are of mixed sign, it is theoretically possible to apply the procedures outlined in 
Section II using the boundary procedure on the boundaries which have no given 
data. 

The techniques discussed in Section I can be extended, in a natural manner, to 
problems of a higher number of space dimensions. Thus, for example, the system 

wheref, g, h are functions of U, x, y, z, t, the extension of (1.4) is 

u m+1 = ~~I2LYI2wY,2L/2~m (III. 1) 

and, as before, the Lz12 operators combine. However, the process is obviously 
losing in efficiency. In [14], Strang suggests that the extension of (1.3) would 
involve all permutations of L, , L, , and L, . In fact, this is not so. It is sufficient to 
use 

U m+1 = W,L,L, + JLLL)&?z. (111.2) 

Notice that the computational advantage of (111.1) over (111.2) has now dropped 
to a factor of only 3/2. The advantage in general is reduced as the number of 
dimensions increases. 

IV. IMPL~T SCHEMES 

The attractive stability conditions of implicit methods has long been known and 
appreciated by practical workers in the field of fluid mechanics and other physical 
sciences. However, there is always the question of extra boundary data required by 
these implicit methods when used to solve hyperbolic systems of partial differential 
equations. In the past, this problem has been ignored and arbitrary data have been 
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included where the physical problem was not forthcoming with the necessary data. 
In this section, we propose the use of explicit boundary schemes similar to those 

outlined by Gourlay and Morris [4] for the introduction of data at unknown 
boundary points. 

Consider the solution of the one space dimensional hyperbolic system 

subject to 

u(x, 0) = no(X) O<x<l, 

64 t> = m t > 0, 

where u is an unknown II vector with components which are functions of x and t. 
f is a known vector function of the components of u. We consider the implicit 
scheme given in [4], namely, 

d,, = ML -PITH& 

P + ~/4Kk+,l urn+1 = 0, - ~l4HJm , 
(IV. 1) 

where pLz and Hz are difference operators defined by 

A is defined by the relation 

A(u) - II = f(u). 

Equation (N.l) is unconditionally stable in the linearized sense and requires the 
inversion of a tridiagonal matrix for its solution. In order to invert this matrix, the 
value of ~lm+~ is required at x = 1. It is at this node that we propose to use an 
explicit boundary procedure. Any explicit procedure will do but we prefer the 
scheme 

d+1 = 4% + 2) 0, - P/m7, + v,“, fm , 
N N N (IV.2) 

y = 3 - ~14w7, + ~2 + v3 fG + v7, + ~2 + ~3 fZ,i. 
N 

JZquation (IV.2) is the method of introducing extra data at boundary points given 
in the explicit schemes considered in [4]. 

The results of using E$. (IV.1) and (lY.2) and the conventional method of 
introducing boundary data are given in Table Vl for the problem of Section II. 
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It was concluded that no loss in accuracy occurred by introducing the boundary 
data by (IV.2). Also, no advantage was gained by “inverting” the lower boundary 
at the predictor level; these boundary data were given by the same data as those 
for the implicit corrector formula. 

It is straightforward to see that this technique can be generalized to a higher 
number of space dimensions. In particular, A.D.I. schemes (see [3], [4], for exam- 
ple) for hyperbolic systems in two space dimensions can then be used for physical 
problems without the need for introducing arbitrary data points. 

TABLE VI 

Errors at 100 time steps for schemes (4.1), (4.2) 

Expk No. h\p 0.1 0.3 0.6 1.0 

1 0.1 lo-’ lo-’ 104 104 
2 0.1 10-k lo-’ 10-a lo-’ 

3 0.1 10-d lo-‘ 104 lo-’ 

4 0.1 10-a lo-’ lo-’ 104 

1 = Theoretical boundaries. 
2 = Theoretical boundaries except for inversion at top boundary of predictor formula. 
3 = Upper boundaries g&n by (IV.2). Bottom boundaries given by theoretical solution. 
4 = The some as 3, except the lower boundary of predictor level also “inverted.” 

Experiments 3 and 4, in fact, gave identical results. 
The errors indicate the max” error that occurred at the 100 time step level. 
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